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California 9 7 125, and Department of Mechanical Engineering, 
University of Ljubljana, Ljubljana, Slovenia 

(Received March 10, 1992) 

An algorithm is described which allows relaxation line spectra to be interconverted into retardation 
line spectra, and vice t'ersa. The first line spectrum is generated from a given experimental response 
such as the relaxation modulus, the storage modulus, or the loss modulus. or from a response such as 
the creep compliance, storage compliance. o r  loss compliance. The interconversion algorithm is here 
applied to the standard linear solid and liquid models, and to a 32-line spectrum simulating the behavior 
of an entangled polymer. 

KEY WORDS Relaxation spectra, retardation spectra. 

INTRODUCTION 

In two previous publications'.2 we have described three computer algorithms which 
generate the discrete relaxation spectrum 

r = N  

H ( 7 )  = C G,7,8(71 - 7) 
i =  I 

from experimental data on either the relaxation modulus, G(r),  the storage mod- 
ulus, G'(o) ,  or the loss modulus, G"(w), or produce the discrete retardation spec- 
trum 

i = N  

L(7)  = J i T i 8 ( 7 i  - 7) 
i =  1 

from experimental data of either the creep compliance, J ( t ) ,  the storage compli- 
ance, J'(o),  or the loss compliance, J"(o). The line spectra generated by these 

117 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
5
6
 
1
9
 
J
a
n
u
a
r
y
 
2
0
1
1



118 N. W. TSCHOEGL AND I. EMRI 

algorithms faithfully reproduce the original input. Once the set of parameters {G,, 
T ~ }  is known, G ( t ) ,  G’(w),  or G”(o) can be obtained from it using the relations 

and 

Similarly, once the set {It, 7,) has been obtained, J ( t ) ,  J ‘ ( o ) ,  or J”(w) can be 
recovered from 

and 

In these equations G, is the equilibrium modulus, G, and J ,  are the glassy modulus 
and compliance respectively, and +f is the steady-flow fluidity. The braces signify 
that {G,} = 0, and {+,ft} = 4/[, {+/f/w} = ++w, when the material is rheodi~tic,~” 
i.e. exhibits steady-state flow, while {G,} = C,, and {@fr}  = {@f/o} = 0, when the 
material is arrheodictic,’a i.e. does not exhibit steady-state flow. 

THEORY 

In this paper we develop a conversion algorithm which permits us to interconvert 
the sets {G,. T,} and {Jf ,  T ~ } .  The in t e r~onver s ion~~  utilizes the reciprocity between 
the relaxance.” 

r = N  
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GENERATING LINE SPECTRA 119 

and the r e t a r d ~ n c e ~ ~  

Q(s )  and U ( S )  are the Laplace transforms of the material’s response to a unit 
impulse of strain, and of stress, respectively, s being the Laplace transform variable. 
They are linked through the simple relation3d Q ( s ) U ( s )  = 1 .  Because of the 
reciprocity between Q(s )  and U ( s ) ,  if the discrete relaxation spectrum, H ( T ) ,  has 
already been obtained, we may generate Q ( s )  from {G;, T,} ,  take its inverse at as 
many points as is necessary, and then apply the algorithm to be discussed below 
to this set of data to obtain the set { J ; ,  T ~ } ,  i.e. the line spectrum, L(7). Analogously, 
we may, of course, obtain H(T) ,  i.e. {G;, T; } ,  if we already have L(T) ,  i.e. {Ii, T;} .  

As in the two preceding papers,’%2 we must now consider the span of the Boundary 
Window or Window 1,  and that of the Modeling Window or Window 2. Window 
1 determines the maximum allowable width for the region from which the algorithm 
selects datum points for the calculation of each successive spectrum line. Window 
2 is the window within which the algorithm operates most efficiently when the 
number of spectrum lines exceeds 1 per decade. The kernel, 1/(1 + T S ) ,  is again 
a half-lorentzian, as is the storage kernel 1/(1 + 0~7~). As shown in Figure 1, 
Window 1 ranges from log TS = -0.5 to log T S  = 0.5. 

Figure 2 shows the negative inverse of the first logarithmic derivative of the 
spectral kernel defined by 

2.303 T S  
~~ - -  
d log T S  ( 1 + T S  ) - (1 + T S ) 2 ’  

Dspec = 

for three neighboring spectrum lines, and the width of Window 2 as given by the 
intersection of the lines. As a function of the number, n, of preselected spectrum 
lines per logarithmic decade it is again calculated as outlined in our earlier 

lop  l z s l  

FIGURE 1 The kernel 1/(1 + TS) and Window 1. 
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120 N.  W. TSCHOEGL AND I .  EMRI 

FIGURE 2 First derivatives o f  three neighboring spectrum lines and Window 2. 

TABLE I 

Lower a n d  Upper Limits of Window 2 as Functions of I I  

I 1  log J ~ T A  log S,,TA I 1  log slrl log S,,Th 

1 -0.5U 0.50 5 -0.10 0.10 
- - 0 30 0.30 6 - C1.08 (1.0s 
3 -0.17 0.17 7 - 0.07 0.07 
4 -0.13 0 .13  X - 0.06 0.06 

We obtain the lower and upper limits of Window 2, .F,. and s,,. as  functions of I I  

from the equations 

a 11 d 

For a single spectrum line the widths of Windows 1 and 2 coincide, as they did i n  
the case of the exponential kernel,’ and of the half-lorentzian and lorentzian ker- 
nels.’ Since the kernel is self-congruent;” the lower and uppcr limits are symmetric 
on the logarithmic scale. Values for I I  = 1 to I I  = 8 are tabulated in Table I .  

THE CONVERSION ALGORITHM 

We now describe our conversion algorithm for the case when we have determined 
{G,, T , } .  and wish to obtain { I , ,  T , } .  We begin by generating a discrete set of values 
{Q,. J,: = I . . . M )  from Equation (9). These are then converted point by point 
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GENERATING LINE SPECTRA 121 

to the set {u,, s J ;  j = 1.0.M) using the relation Q(s)o(s) = 1. We then apply the 
algorithm to the normalized discrete retardance. 

where the j:s  are the normalized compliances, J i ,  and where3' 

which is the expression* linking the steady-state fluidity, +f, to {G;,  T ~ } .  

We now separate out the kth spectrum line. This gives 

where A, = A: + A; again account for any experimental or approximation error.IJ 
The sum of squares of A, within Window 2 is given by 

where Zk.1 and .?k.u are the first and the last discrete points in the window which 
belongs to the kth spectrum line. Minimizing the error according to dEkldjk = 0, 
leads to 

where 

Equations (18) and (19) constitute the algorithm for evaluating { J j ,  T ~ }  from {Gj,  
T,}. If i t  is desired to find {C,, T ~ }  from { J j ,  T ~ } ,  then we have 

~~ 

*Equation (15) will give a satisfactory value only if the data span a sufficiently wide range of times 
or frequencies. Otherwise 4, must be determined in other ways. 
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122 N. W. TSCHOEGL AND I. EMRI 

The minimization condition then yields 

where 

RESULTS 

For our first example to demonstrate the working of the conversion algorithm we 
selected the standard arrheodictic 3-parameter Maxwell model shown in Figure 3a 
for which 

We generated Q(s) with the values C ,  = lo', G = 109/l.001 N/m2, and 7M = 
10-4/l.001 seconds. The model possesses a single spectrum line of strength G 
located at log T = log T.~. Both Q(s) and the line spectrum, H ( T ) ,  are shown in 
Figure 4. 

Application of the conversion algorithm to u(s) as obtained from the relation 
Q ( s ) I / ( s )  = 1 yielded a singlet spectrum. The line spectrum, L(T) ,  consisted in 
this case of a single line of strength J = lop6 m2/N. This line was located at log 
7" = - 1. It is also shown, together with o(s) ,  in Figure 4. 

It is readily shown that the algorithm did, indeed, furnish the correct value of 
the single line of the retardation spectrum. According to the linear theory of 
viscoelastic beha~ io r ,~g  the standard arrheodictic 3-parameter Voigt model shown 
in Figure 3b, for which we have 

J U(s )  = J ,  + ___ 
1 + 7"s' 

+TiG i- 
1 7s {% @IS 

a b 

FIGURE 3 The 3-parameter Maxwell (3a), and Voigt (3b) models, 
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2 -41 

. 
L IYI -lot 1 f l ,  I .  I ' .  I ,  I .  I 

- 2 - 1  0 1 2  3 4 5 6 
log s - V s s c o n d  

FIGURE 4 
representing the relaxation and retardation singlet spectra. 

Q ( s )  and u ( s )  for the standard arrheodictic model as  function of log s and the two lines 

a b 

FIGURE S The 4-parameter Maxwell (Sa) and Voigt (Sb) models. 

will exhibit identical behavior with that of the 3-parameter Maxwell model if the 
parameters of the two conjugate models are connected by the relations 

and 

These relations are satisfied exactly. Expressed in other words, the algorithm has 
successfully converted the relaxation (line) spectrum, H ( T )  = G T ~ ~ ( T ~  - T ) ,  into 
the retardation (line) spectrum, L(T) = J T ~ S ( T ~  - 7). 

We obtained similar results with the rheodictic 4-parameter Maxwell model 
displayed in Figure 5a, for which 

We constructed &(s) this time with the parameters Go = lo6. G, = lo9 N/m2, and 
T~ = 1, T ,  = seconds. From this we obtained the two sets of datum points 
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124 N .  W .  TSCHOEGL AND I .  EMRI 

and 

where +f = l/(G,l + G I ) .  These sets were plotted as connected lines in Figure 6. 
Applying the conversion algorithm to the second set (which is corrected for the 

presence of the fluidity term),  we obtained a doublet line spectrum. The locations 
of the two lines and their (normalized) strengths are listed in the first two rows of 
Table 11. 

To check the results obtained, we again turned to the theory of linear viscoelastic 
behavior. The Voigt model which is the conjugate''' of the 4-parameter Maxwell 
model is displayed in Figure 5b. Its retardance is given by 

For the two models in Figure 5 to exhibit identical behavior, their parameters must 
be connected7' by the relations 

and 

- 2 - 1  0 1 2  3 4 5 6 
log s - l isecond 

FIGURE 6 
spectrum lurni~hecl by the ctlprithm 

U ( s )  and U ( s )  - 61s obtained from the theoretical singlet spectrum and from the doublet 

TABLE I1 

Calculated and T r u e  Valucs of Spectrum Lirics 
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GENERATING LINE SPECTRA 125 

The appropriate values of J and of T~ are listed in the third row of Table 11. These 
values represent a singlet spectrum. Instead, the interconversion yielded a doublet 
spectrum. This is obtained, of course, because none of the locations of the algo- 
rithm's preselected spectrum lines coincide exactly with that of the 4-parameter 
Voigt model. The algorithm therefore places a large line at the preselected location 
nearest to that of the expected Voigt model line, and compensates for the mismatch 
by generating a second line. The effect of this on u(s) recovered from the doublet 
spectrum is extremely small. u(s) and o(s) - +Is calculated from 

and from Equation (30), are identical within the resolving power of a plot such as 
that shown in Figure 6 where the circles indicate the values calculated using the 
doublet spectrum. Incidentally, any discrepancies introduced because of the pre- 
selection of the spectral lines with which the algorithm operates can be decreased 
by increasing the number of lines per decade at the expense of a longer computer 
run time. 

In our first two papers,',* we demonstrated the power of the algorithm with the 
aid of a 32-line spectrum derived from a mathematical equation simulating the 
relaxation spectrum of an entangled, uncrosslinked, i.e. pseudo-arrheodictic,3' 
polymer. The spectrum, 

r = 3 *  

H ( T )  = C G ; T ~ ~ ( T ,  - T ) .  
r = l  

(34) 

is reproduced in Figure 7. 
Figure 8 shows log G(t)  and log Q ( s )  calculated from this spectrum using Equa- 

tions (3) and (9). respectively. 
To derive the concomitant retardation spectrum, we proceeded essentially as 

with the standard rheodictic model. Using Q(s,) we obtained u ( s l )  by Equation 
(28) and o(s,) - ++s, by Equations (29) and (15). Each tenth point of these values 
is plotted as a full circle in Figure 10. 

0 

k 6  . 
7 4  - 
- 0 2  

z 

I 

0 
-6 -4 . 

FIGURE I 

0 2 4 6 8 10 
log - s e c o n d  

32-Line relaxation spectrum. 
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2 ! ,  . I , . , . ,  , 
-10 - 8  -6 - b  - 2  0 2 4 6 8 10 

log 1 - second. 104 s - lisecond 

FIGURE 8 Log G ( I )  and log Q ( s )  obtained from the 32-line relaxation spectrum 

- 6  

-4 
- 10 -6 LA -4 - 2  4 1 

log c - second 

FIGURE 9 Retardation spectrum generated by the algorithm from the 32-line relaxation spectrum. 

log s - l isecond 

FIGURE 10 
the algorithm 

Log U(s )  and log [U (s )  - Q , / s ]  calculated from the retardation spectrum generated by 

We then applied Equations (18) and (19) to  obtain the retardation spectrum 

This is shown in Figure 9. 
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GENERATING LINE SPECTRA 127 

Figure 10 displays log u(s) and log [ I / @ )  - (bf/s] calculated from Equation (10) 
using the parameters 1, and T, generated by the algorithm and are shown as solid 
lines. U(s)  - ++s clearly reveals the existence of the steady-state compliance 1: 
at the left end of the curve. 

CONCLUSIONS 

The examples and illustrations adduced here satisfactorily demonstrate the viability 
of the interconversion algorithm. In a forthcoming publication4 we intend to apply 
the algorithms discussed here and in the two preceding papers1,* to experimentally 
obtained data. 
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